Chemistry 3830

Halogens

Properties of Halogens

Elements do not occur in nature in their elemental form

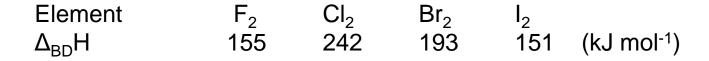
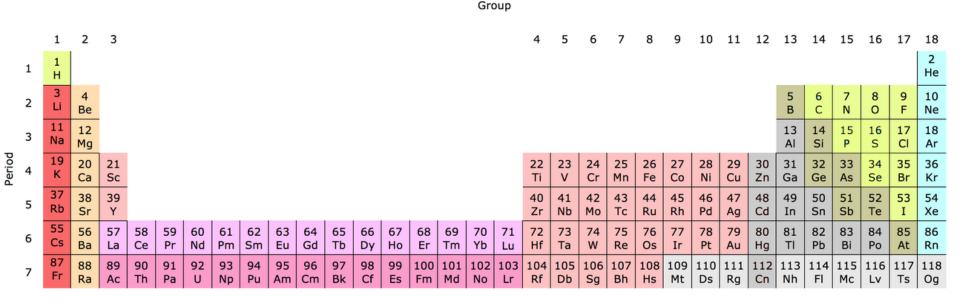
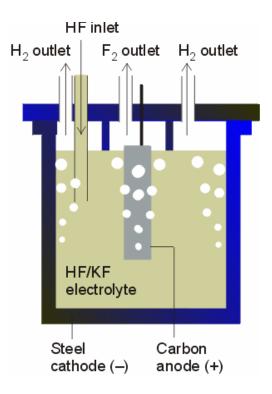

	F	Cl	Br	I	At
Covalent radius/pm	71	99	114	133	140
Ionic radius/pm	131	181	196	220	
First ionization energy/(kJ mol ⁻¹)	1681	1251	1139	1008	926
Melting point/°C	-220	-101	-7.2	114	302
Boiling point/°C	-188	-34.7	58.8	184	
Pauling electronegativity	4.0	3.2	3.0	2.6	2.2
Electron affinity/(kJ mol ⁻¹)	328	349	325	295	270
<i>E</i> [↔] (X _{2'} X ⁻)∕V	+3.05	+1.36	+ 1.09	+0.54	

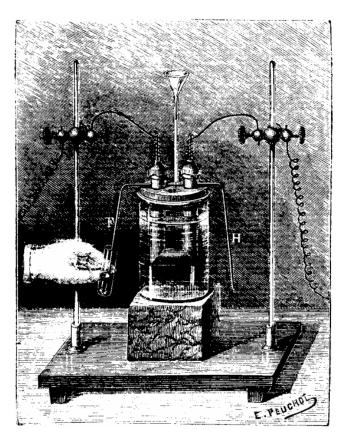
 Table 17.1
 Selected properties of the elements


$$\mathsf{A}^{-}_{(g)} \quad \rightarrow \quad \mathsf{A}_{(g)} \quad \textbf{+} \; e^{-}_{(g)} \; ; \qquad \mathsf{E}_{\mathsf{ea}}$$

Why is fluorine defying the expected trend?

Properties of Halogens




Why is fluorine defying the expected trend?

Preparation of Fluorine

- ElectrolysisWater must not be present
- Electrolysis of a melt: KF·2HF has the lowest decomposition voltage

Products: H_2 on cathode and F_2 on anode

Moissan in 1886

Preparation of Chlorine

Possibility, technically not good:

Industrial process:

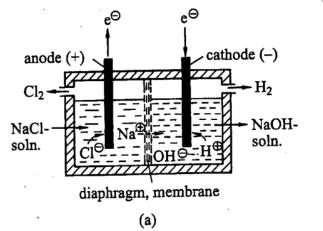
- Electrolysis
- Chlor-alkali process, electrolysis of aqueous NaCl

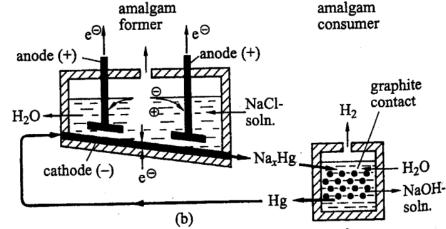
$$\begin{array}{rcl} \mathsf{CI}_2 \ + \ 2\mathrm{e}^- \rightarrow & 2\mathsf{CI}^- \\ \mathsf{O}_2 \ + \ 4\mathrm{H}^+ \ + \ 4\mathrm{e}^- \rightarrow & 4\mathsf{H}_2\mathsf{O} \\ \mathsf{Na}^+ \ + \ \mathrm{e}^- \rightarrow & \mathsf{Na} \\ 2\mathsf{H}_2\mathsf{O} \ + \ 2\mathrm{e}^- \rightarrow & \mathsf{H}_2 \ + \ 2\mathsf{OH}^- \end{array}$$

 $E_{\frac{1}{2}} = 1.36 \text{ V}$ $E_{\frac{1}{2}} = 0.825 \text{ V}$ (in a neutral solution) $E_{\frac{1}{2}} = -2.71 \text{ V}$ $E_{\frac{1}{2}} = -0.41 \text{ V}$ (in a neutral solution)

Expected products: ?

Expected products: H₂ and O₂


- Use of iron cathode: <u>H₂ generation</u>
- Use of graphite anode: <u>Cl₂ generation</u>
- O₂ has a high overpotential on graphite!!!

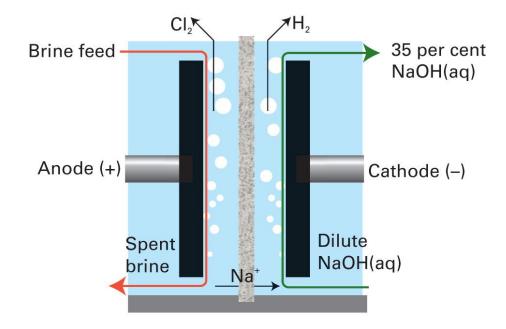

Chlor Alkali Process

 $Na^+ + Cl^- + H_2O \rightarrow Cl_2 + NaOH + H_2$

1. Diaphragm process

2. Mercury process

- Diaphragm made of asbestos
- Large overpotential of H₂ on mercury cathode
- Nice separation of NaOH from the brine
- Loss of Hg; use of contaminated NaOH in pulp and paper industry


Chlor Alkali Process

 $Na^+ + Cl^- + H_2O \rightarrow Cl_2 + NaOH + H_2$

3. Membrane process:

Use of a fluoropolymer membrane (not cheap), NAFION (DuPont)

<u>Downsides</u>: brine has to have very low Ca²⁺ concentration membrane has to be exchanged from time to time

Chlor Alkali Process

 Na^+ + Cl^- + H_2O \rightarrow Cl_2 + NaOH + H_2

If chlorine is stirred into cold NaOH(aq): household bleach is obtained

 Cl_2 + 2 $OH^- \rightarrow ClO^-$ + Cl^- + H_2O

If the reactor is heated:

$$3 \text{ ClO}^- \rightarrow \text{ ClO}_3^- + 2 \text{ Cl}^-$$

For some pulp plants: another bleaching agent is used: CIO₂

 $2 \text{ NaClO}_3 + \text{SO}_2 + \text{H}_2 \text{SO}_4 \rightarrow 2 \text{ NaHSO}_4 + 2 \text{ClO}_2$

Dilute yellow-green gas is used in bleaching pigments in the pulp

Reactions of Chlorine

1. Reaction with metals

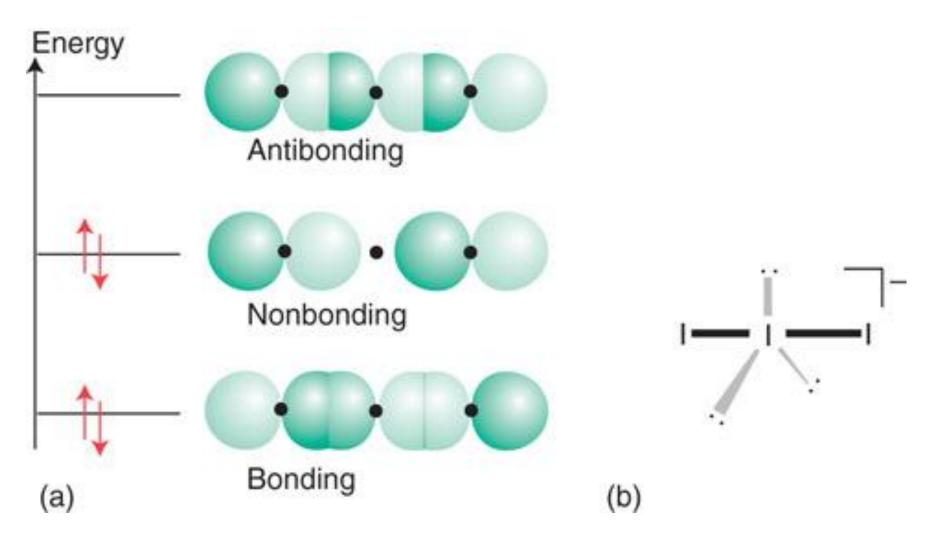
2 Na	+	Cl_2	\rightarrow	2 NaCl
2 Fe	+	3 Cl_2	\rightarrow	2 FeCl_3

2. Displacement reactions

3 Cl ₂ + 2 Br [_]	\rightarrow	2CI-	+	Br_2
3 Cl ₂ + 2 I⁻	\rightarrow	2CI-	+	I_2

3. Reaction with water

 H_2O + $Cl_2 \rightleftharpoons$ HCl + HOCl


• Low solubility: saturated aqueous solution at 25 °C, 0.091 mol/L Of that: $[Cl_2] = 0.061$ mol/L; [HOCI] = 0.030 mol/L

In base: complete disproportionation

 Cl_2 + 2 NaOH \rightarrow NaClO + NaCl + H_2O

Polyhalides Anions

 $I_2 + I^- \rightarrow I_3^-$

Hydrogen Halides

Distinguish between the compound and the aqueous acid!

Hydrogen chloride (HCl(g)) vs. hydrochloric acid (HCl(aq))

 Table 17.2
 Selected properties of the hydrogen halides

	HF	HCI	HBr	HI
Melting point/°C	-84	-114	-89	-51
Boiling point/°C	20	-85	-67	-35
Relative permittivity	83.6 (at 0°C)	9.3 (at -95°C)	7.0 (at -85°C)	3.4 (at −50°C)
Electrical conductivity/ (S cm ⁻¹)	<i>c</i> . 10 ⁻⁶ (at 0°C)	<i>c</i> . 10 ⁻⁹ (at —85°C)	<i>c</i> . 10 ⁻⁹ (at —85°C)	<i>c</i> . 10 ⁻¹⁰ (at -50°C)
$\Delta_{\rm f} G^{\leftrightarrow} / (\rm kJ \ mol^{-1})$	-273.2	-95.3	-54.4	+1.72
Bond dissociation energy/(kJ mol ⁻¹)	567	431	366	298
р <i>К</i> _а	3.45	с. —7	с. —9	с. — 11

Hydrogen Halides

Hydrogen fluoride, HF:

- $CaF_{2(s)}$ + $H_2SO_{4(aq)} \rightarrow CaSO_{4(s)}$ + $2 HF_{(g)}$
- CaF₂ is the primary fluoride mineral: Fluorspar (or Fluorite)
- **HF is extremely toxic!** It will precipitate Ca²⁺ from your tissue and attack bones.

Hydrogen chloride, HCI:

 $2 \text{ NaCl} + \text{H}_2 \text{SO}_4 \rightarrow \text{Na}_2 \text{SO}_4 + 2 \text{ HCl}$

- Minor quantities produced industrially via this method
- Mainly as a byproduct from industrial chlorinations or halogen exchange reactions in organic chemistry

Hydrogen Halides

Hydrogen bromide and hydrogen iodide, HBr and HI:

- H₂SO₄ is a strong oxidizer and will oxidize Br⁻ and I⁻ to the elemental halogens
- Use of H₃PO₄ instead

Acidity of aqueous hydrogen halides:

$$HF_{(aq)} < HCI_{(aq)} < HBr_{(aq)} < HI_{(aq)}$$

<u>Special note</u>: anhydrous HF is a "superacid".

• **Superacids** are acids that are stronger than 100% H₂SO₄

Oxoacids And Oxoanions of Chlorine

- 1. Cl_{2(g)} in cold basic solutions: disproportionation to CIO⁻ and Cl⁻
- 2. When the CIO⁻ solution is heated, it further disproportionates into CIO_3^- and CI^-
- 3. Maintaining $KCIO_3$ just above the melting point will produce $KCIO_4$ and CI^-

4 KClO₃ \rightarrow 3 KClO₄ + KCl; at 400 °C

At higher temperature: Cl⁻ and O₂

In industry: anodic oxidation of CIO₃-

 $2 \text{ KClO}_4 \quad + \quad \text{H}_2 \text{SO}_4 \quad \rightarrow \quad \text{K}_2 \text{SO}_4 \quad + \quad 2 \text{ HClO}_4$

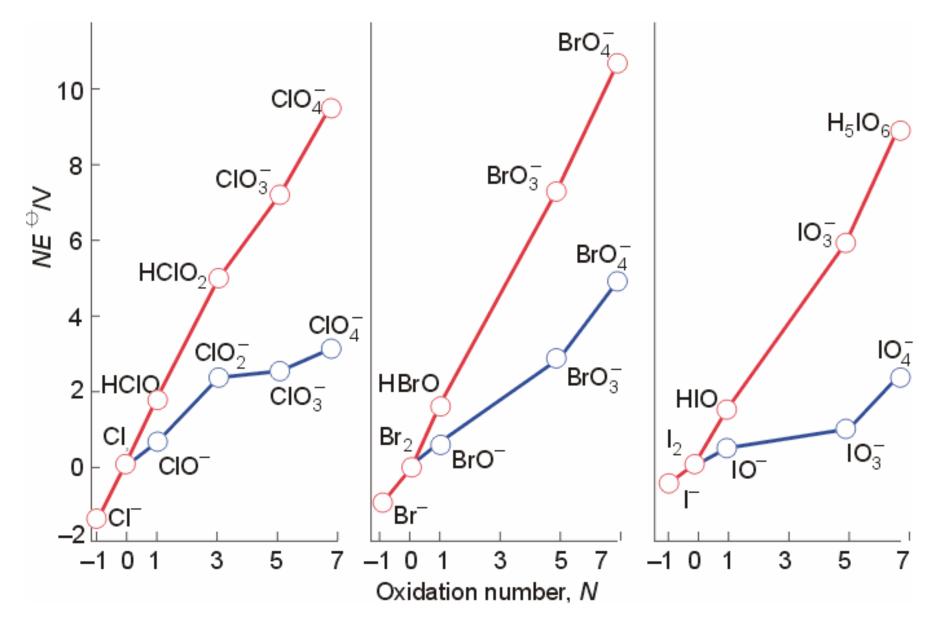
- Special fume hoods needed for perchlorate work!
- ClO₄ Perchlorate; strong oxidizer, used in rocket propellents
- CIO₃- chlorate
- CIO₂- chlorite
- CIO⁻ hypochlorite
- HClO₄ Perchloric acid
- HCIO₃ Chloric acid
- HClO₂ Chlorous acid
- HCIO = HOCI Hypochlorous acid

Oxoanions of Chlorine

Table 17.4 Halogen oxoanions

Oxidation number	Formula	Name*	Point group	Shape	Remarks
+1	CIO-	Hypochlorite [monoxidochlorate(I)]	$C_{_{\infty v}}$	Linear	Good oxidizing agent
+2	CIO ₂	Chlorite [dioxidochlorate(III)]	C _{2v}	Angular	Strong oxidizing agent, disproportionates
+5	CIO ⁻ ₃	Chlorate [trioxidochlorate(V)]	C _{3v}	Pyramidal	Oxidizing agent
+7	CIO_4^-	Perchlorate [tetraoxidochlorate(VII)]	T_{d}	Tetrahedral	Oxidizing agent, very weak ligand
* IUPAC names in square brackets.					

Acidity of Oxoacids


Pauling's rules for oxoacids, (O=)_pE(OH)_q

1. pKa $\approx 8 - 5p$

2. For polyprotic acids (q > 1): pKa + 5 for each consecutive deprotonation step

		pKa from Pauling's rules	pKa
HCIO ₄	Perchloric acid	-7	-10
HCIO ₃	Chloric acid	-2	-1.2
HCIO ₂	Chlorous acid	3	2
HCIO = HOCI	Hypochlorous acid	8	7.53

Redox Chemistry of the Halogens

